Code
import polars as pl
import pandas as pd
import altair as alt
from vega_datasets import data as vega_data
import polars as pl
import pandas as pd
import altair as alt
from vega_datasets import data as vega_data
= vega_data.gapminder()
data
= pl.DataFrame(data).filter(pl.col("year") == 2000).to_pandas()
data2000
= alt.selection_single(
select_year ='select',
name=['year'],
fields=alt.binding_range(min=1955, max=2005, step=5)
bind
)
=True).encode(
alt.Chart(data).mark_point(filled'fertility:Q', title='Fertility', scale=alt.Scale(domain=[0,9])),
alt.X('life_expect:Q', title='Life Expectancy', scale=alt.Scale(domain=[0,90])),
alt.Y('pop:Q', title='Population', scale=alt.Scale(domain=[0, 1200000000], range=[0,1000])),
alt.Size('cluster:N'),
alt.Color(0.5),
alt.OpacityValue('country:N'),
alt.Tooltip('pop:Q', sort='descending')
alt.Order( ).add_selection(select_year).transform_filter(select_year)
= vega_data.cars()
source
= alt.selection(type='interval')
brush
= alt.Chart(source).mark_point().encode(
points ='Horsepower:Q',
x='Miles_per_Gallon:Q',
y=alt.condition(brush, 'Origin:N', alt.value('gray'))
color
).add_selection(
brush
)
= alt.Chart(source).mark_bar().encode(
bars ='Origin:N',
y='Origin:N',
color='count(Origin):Q'
x
).transform_filter(
brush
)
=source) alt.vconcat(points, bars, data